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DEGENERACY IN CANDECOMP/PARAFAC EXPLAINED FOR p x p x 2 ARRAYS
OF RANK p + 1 OR HIGHER
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The Candecomp/Parafac (CP) model decomposes a three-way array into a prespecified number R
of rank-1 arrays and a residual array, in which the sum of squares of the residual array is minimized. The
practical use of CP is sometimes complicated by the occurrence of so-called degenerate solutions, in which
some components are highly correlated in all three modes and the elements of these components become
arbitrarily large. We consider the real-valued CP model in which p x p x 2 arrays of rank p + 1 or higher
are decomposed into p rank-1 arrays and a residual array. It is shown that the CP objective function does
not have a minimum in these cases, but an infimum. Moreover, any sequence of CP approximations, of
which the objective value approaches the infimum, will become degenerate. This result extends Ten Berge,
Kiers, & De Leeuw (1988), who consider a particular 2 x 2 x 2 array of rank 3.
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Introduction

Carroll & Chang (1970) and Harshman (1970) have independently proposed the same method
for component analysis of three-way arrays, and named it Candecomp and Parafac, respectively.
For a given three-way array X of order / x J x K and a fixed number of R components,
Candecomp/Parafac (CP) yields component matrices A (I x R),B (J x R),and C (K x R) such
that Z,le tr(EZEk)is minimized in the model

X; = AC;BT + E,, k=1,2,...,K, 1))

where X; denotes the kth slice of order I x J R and C; is the diagonal matrix containing the
elements of the kth row of C. We consider the real-valued CP model, i.e., we assume the array
X and the component matrices A, B, and C to be real-valued. The real-valued CP model is
used in a majority of applications in psychology and chemistry (see Kroonenberg, 1983; Smilde,
Bro, & Geladi, 2004). Complex-valued applications of CP occur in, e.g., signal processing and
telecommunications research (see Sidiropoulos, 2004).

Notice that (1) can also be written as

R
X= Zx(r) +E, with X(r) = a,ob,oc,, )
r=I1

where a,, b,, ¢, are the rth columns of A, B, and C, respectively, o denotes the outer vector
product, and E is the residual array with slices Ei, k=1, 2,. . ., K. Hence, CP decomposes X into
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R rank-1 arrays Y and a residual array E.The three-way rank of X over the real field is defined
as the smallest number of real-valued rank-1 arrays whose sum equals X. Hence, the smallest
number R for which X satisfies the (real-valued) CP model with perfect fit (i.e., E = O ) is by
definition equal to the three-way rank (over the real field) of X. In the sequel, the rank of any
array is assumed to be the rank over the real field.

To any set of component matrices (A, B, C) corresponds a fitted model array X= Zle Y®,
see (2). We will refer to a set (A, B, C) and the corresponding X, which minimizes the sum of
squares of E in (2), as a best rank-R approximation of X or as an optimal CP solution. A set (A,
B, C) and the corresponding X, for which the sum of squares of E is not minimal, will be referred
to as a rank-R approximation of X or as a CP solution.

CP is a special case of the Tucker3 model, which was introduced by Tucker (1966). For a
three-way array X of order / x J x K, the Tucker3 model is given by

R P 0
X= Z Z Z grpq(srotpouq) +E, 3)

r=1 p=1 g=1
where E is the residual array, R, P, and Q are the numbers of components in the three modes,
SUxR), T(JxP),and U (K x Q) are the component matrices with columns s,, t,, u,,
respectively, and G is an R x P x Q core array with elements g,,,. It can be seen that (2) and
(3) are equivalent if R = P = Q and the core array G satisfies g, = 1 and g,,, = 0if r, p, and

q are not all identical.

One of the most attractive features of CP is its uniqueness property. The uniqueness of a CP
solution is usually studied for a given fitted model array X. It can be seen that the component
matrices (A, B, C) corresponding to X can only be unique up to rescaling and jointly permuting
columns of A, B, and C. Indeed, the fitted model array X will be the same for the solution given
by A = APT,, B = BPT,, and C = CPT,, for a permutation matrix P and diagonal matrices T,,
Ty, and T, with T, T, T, = Ig. Usually, these are the only transformational indeterminacies in CP.
When, for a given model array X the matrices A, B, and C are unique up to these indeterminacies,
the CP solution (A, B, C) is called essentially unique. To avoid the scaling indeterminacy the
columns of two component matrices can be normed at unit length (in this way, the diagonal
elements of T, and T}, are only allowed to be —1 or 1). In the sequel, we will implicitly assume
these restrictions have been imposed, and label each component matrix as either restricted (of
which there are two) or unrestricted (of which there is one).

Kruskal (1977) has shown that (essential) uniqueness holds under relatively mild conditions.
Kruskal’s condition relies on a particular concept of matrix rank that he introduced, which has
been named k-rank (Kruskal rank) after him. Specifically, the k-rank of a matrix is the largest
number x such that every subset of x columns of the matrix is linearly independent. We denote
the k-rank of a matrix A as k4. Kruskal (1977) proved that the following condition is sufficient
for essential uniqueness in CP:

2R +2 < kp + kg + kc. @

The practical use of CP has sometimes been complicated by the occurrence of so-called
degenerate solutions. In such cases, convergence of the CP solution is extremely slow and some
components are highly correlated in at least two modes. Degenerate CP solutions were first
reported in Harshman & Lundy (1984). In the majority of such cases, exactly two factors, say
Y® and Y, of the solution display the following pattern:

e In all three component matrices, the columns s and ¢ are almost exactly equal up to a sign
change, the product of these sign changes tending toward —1.

® The magnitudes of the elements of columns s and # in the unrestricted component matrix
become arbitrarily large.
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This pattern is called a two-factor degeneracy (see Kruskal, Harshman, & Lundy, 1989). The
contributions of Y and Y diverge in nearly opposite directions. However, their sum Y+ Y
still contributes to a better fit of the decomposed array. Degenerate CP solutions can be avoided
by imposing constraints on the component matrices, such as orthogonality or nonnegativity (see
Harshman & Lundy, 1984; Lim, 2005). Of course, this will come with some loss of fit of the
fitted CP model.

Kruskal et al. (1989) have argued that degenerate solutions occur due to the fact that the
CP objective function has no minimum, but an infimum. They reason that every sequence of
CP solutions of which the CP objective value approaches the infimum must fail to converge and
displays the pattern of degeneracy as stated above. In particular, Kruskal et al. (1989) consider
rank-2 approximations of 2 x 2 x 2 arrays of rank 3. Kruskal (1989) shows that the eight-
dimensional space of 2 x 2 x 2 arrays is divided into a set of rank-2 arrays, a set of rank-3 arrays
(both of which have positive volume, i.e., dimensionality §), and a seven-dimensional boundary
between those two sets. On this boundary, arrays may have rank 0, 1, 2, or 3. Kruskal et al. (1989)
use this framework and state that a sequence of rank-2 approximations to a rank-3 array becomes
degenerate because it approaches a rank-3 array on the boundary between the sets of rank-2 and
rank-3 arrays. This boundary array can be approximated arbitrarily closely from the set of rank-2
arrays.

Paatero (2000) provides a characterization of the rank-3 arrays on the boundary and con-
structs sequences of rank-2 arrays which have a rank-3 boundary array as limit point and tend
toward a two-factor degeneracy. Paatero (2000) shows that these sequences of rank-2 arrays
satisfy a particular Tucker3 model (3) with a2 x 2 x 2 core array. This is in line with the idea
of Harshman & Lundy (1984), who conjecture that degenerate CP solutions occur when CP tries
to model “Tucker variation” (see also Kruskal et al., 1989; Harshman, 2004).

Mitchell & Burdick (1994) have introduced the term swamp for a situation where the
alternating least squares (ALS) algorithm used to fit a CP model advances very slowly. They
have fitted a four-component CP model to simulated data arrays of order 40 x 40 x 4 and
found that if the ALS algorithm is going through a swamp, the CP solution becomes a two-factor
degeneracy. Sometimes the ALS algorithm terminates inside a swamp and yields a CP solution
with a two-factor degeneracy, but on other occasions the ALS algorithm is temporarily stuck
in a swamp and terminates with a nondegenerate CP solution. The relation between swamps
and two-factor degeneracies was used by Rayens & Mitchell (1997) to construct a modified CP
algorithm, especially designed to avoid swamps. In the case of rank-2 approximations to 2 x
2 x 2 arrays, Paatero (2000) conducts numerical experiments which show that swamps occur
near the boundary between the sets of rank-2 and rank-3 arrays. If the target array X has rank 2
and is close to the boundary, the CP algorithm may pass through a temporary swamp and end
in X itself. However, Paatero (2000) also presents an example where the starting point of the
CP algorithm is chosen such that the CP algorithm cannot get around a curve in the boundary
between the starting point and X. In this case, the CP algorithm terminates close to the boundary
with a two-factor degeneracy.

Apart from two-factor degeneracies, also degeneracies involving more than two components
can occur. Paatero (2000) has constructed a sequence of rank-3 arrays which hasa 3 x 3 x 3
array of rank 5 as limit point and tends toward a three-factor degeneracy, in which the three
factors Y&, Y, and Y™ display the following pattern:

e In two-component matrices, the columns s, ¢, and u are almost exactly equal up to a sign
change. In the third component matrix, the sum of the three columns (up to a sign change)
is close to zero.

e In the unrestricted component matrix, the magnitudes of the elements of columns s, ¢, and
u become arbitrarily large.
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The sign changes are such that the contributions of two of the factors nearly cancel the contribution
of the other factor, while the sum Y 4+ Y® 4+ Y™ still contributes to a better fit of the decomposed
array.

Another example of a three-factor degeneracy as above is when the three-component CP
model is fitted to the 3 x 3 x 2 array with slices

100 1 0 —1
X,=[010 and X,=|21 3 |. 5)
001 0—-4 2

With A and B restricted and C unrestricted, we obtain the following solution:

0.4864 0.4616 —0.4738 0.7236 —0.6933 0.7086
A = | —0.6649 —0.6535 0.6599 |, B= 0.6068 —0.6507 0.6290 |,
—0.5671 —0.5999 0.5835 0.3291 —0.3098 0.3203

C_[ 653.4 —625.3 1277.9}

2162.1 —2238.9 4397.9 (6)

which is a three-factor degeneracy.

Paatero (2000) has also constructed a degeneracy involving four factors, by means of a
superposition of two two-factor degeneracies. Below, we will see that four-factor degeneracies and
five-factor degeneracies, analogous to the three-factor degeneracy above, can also be encountered.

In the present paper we will use the framework of Kruskal et al. (1989) to explain the
occurrence of degenerate solutions for rank-2 approximations to 2 x 2 x 2 arrays of rank 3. We
will analyze the more general setting of rank-p approximations of p x p x 2 arrays which have
rank p + 1 or higher. Analogous to the eight-dimensional space of real-valued 2 x 2 x 2 arrays,
the 2 p2-dimensional space of real-valued p x p x 2 arrays consists of a set of rank-p arrays, a
set of rank-(p + 1) arrays (both of which have positive volume, see ten Berge & Kiers, 1999)
and a lower-dimensional boundary between those two sets. On this boundary, arrays may have
all rank values from O up to the maximal rank for real-valued p x p x 2 arrays, which is equal
to p + floor(p/2) (see Ja’ Ja’, 1979; Kruskal, 1989). In our analysis, we only consider arrays in
the following set:

R, = {yisareal-valued p x p x 2array with Y, invertible}.

All arrays in R, have at least rank p and the boundary between the rank-p and rank-(p + 1)
arrays, intersected with R ,, contains virtually only arrays of rank p + 1 or higher. Our main result
is the following.

Theorem 1. Let X be a real-valued p x p x 2 array with p x p slices X and X,. Suppose that
X, ! exists. If the rank of X is p + 1 or higher, then:

(i) the CP objective function of the best approximation of X by rank-p arrays in R, does not
have a minimum, but an infimum, and

(ii) any sequence of rank-p arraysin R, of whichthe CP objective value approaches the infimum,
will become degenerate.

To prove (i) we proceed as follows. By D, we denote the set of rank-p arrays in R ,. Since
X does not lie in D, any interior point of D, can be improved by “moving toward the boundary
of D,.” Hence, an optimal CP solution will be a boundary point of D,. However, virtually all
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boundary points of D, have rank p + 1 or higher and, hence, do not lie in D, itself. The boundary
points of D, which have rank p constitute a lower-dimensional set and play no role in practice.
Hence, the interior of D), is virtually equal to D, itself (this is equivalent to D, being an open
set), and this implies that the CP objective function does not have a minimum but an infimum.
To prove (ii) we show that any sequence in (ii) has a limit point on the boundary. This limit point
will have rank p 4 1 or higher and is approximated arbitrarily closely by the rank-p sequence
in (ii). When this sequence gets close to the limit point, it necessarily becomes degenerate. This
shows that our result extends and proves the statements made by Kruskal et al. (1989) for the
2 x 2 x 2 case.

In the proof of Theorem 1 we will make use of Ten Berge (1991), who developed a rank
criterion for a real-valued p x p x 2 array X based on the eigendecomposition of XZXII. We
illustrate our result by using a CP algorithm to calculate rank-p approximations of random
p X p x 2 arrays of rank p 4+ 1 for p =2, 3,4, 5.

Before we prove Theorem 1, we will examine a particular 2 x 2 x 2 array of rank 3, which
is the only array so far for which it has been proven that the CP objective function does not
have a minimum. We will refer to this array as the K3 array (Kruskal rank-3 array), since it was
introduced in Kruskal (1989). The K3 array has slices

X1=|:(1) —Oli| and X2=|:(1) (1):| (7)

Ten Berge, Kiers, and De Leeuw (1988) show that when the K3 array is approximated by rank-2
arrays, the CP objective function does not have a minimum but an infimum of 1. Below we
will show that all CP solutions, of which the CP objective value approaches the infimum, will
become degenerate. Moreover, it will be shown that a boundary point X of the set of rank-3 arrays
exists, which can be approximated arbitrarily closely from the set of rank-2 arrays, and for which

||X — X”z = 1, where X is the K3 array and ||-|| denotes the Frobenius norm.

First, however, we discuss the eigendecomposition of a real-valued square matrix and a link
between simultaneous diagonalization of two square matrices and the rank of p x p x 2 arrays.
Both concepts are used heavily throughout the paper, and for ease of presentation we summarize
all relevant results and properties below.

The Eigendecomposition of a Real-Valued Square Matrix

Let X be areal-valued p x p matrix. If, for some nonzero column vector k and some scalar
A, there holds
Xk = Ak. 8)

then A is called an eigenvalue of X and K is called an eigenvector of X, associated with eigenvalue
A. It is well known that the eigenvalues of X are the solutions of the characteristic equation
det(X — AI,) = 0. Since g(A) = det(X — AI,) is a pth degree polynomial in A, it follows that X
has exactly p eigenvalues, which are the p roots of g(1) = 0. Once the eigenvalues of X are known,
the associated eigenvectors may be determined from (8). For each eigenvalue, there exists at least
one associated eigenvector. Note that eigenvectors are determined up to scalar multiplication (i.e.,
if k is an eigenvector associated with A, then so is ck, for any nonzero scalar c).

For a real-valued matrix, an eigenvector associated with a real eigenvalue can always be
chosen real-valued, while an eigenvector associated with a complex eigenvalue is necessarily
complex-valued. An example of a real-valued matrix with complex eigenvalues is the following.

The matrix [[1) Bl ] has eigenvalues i and —i, and eigenvectors ('1 ) (associated with eigenvalue i)

and (711 ) (associated with eigenvalue —i).
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It can be seen from (8) that if the real-valued matrix X has a complex eigenvalue A and
an associated (necessarily complex) eigenvector k, then the complex conjugate X is also an
eigenvalue of X and the complex conjugated vector k is an eigenvector associated with 1. Hence,
complex eigenvalues always occur in pairs when X is real-valued.

Next, we define the following concepts. The algebraic multiplicity a(A) of an eigenvalue A
is defined as the multiplicity of A as a root of the characteristic equation g(A) = 0. The geometric
multiplicity g(A) of an eigenvalue A is defined as the maximum number of linearly independent
eigenvectors associated with A. Finally, the eigenspace E(A) of A is defined as the subspace
spanned by all eigenvectors associated with A. It follows that the geometric multiplicity of A
is equal to the dimensionality of E(A). Note that any nonzero vector in E()) is an eigenvector
associated with A.

The following facts are well known. Let X have M (and no more than M) distinct eigenvalues
A, - -+, Ay. Then there holds:

@ 1< g0m) <alm)m=1,..., M;
) Yo a(hw) = p;
©) D1 &) < pi

(d) any set of eigenvectors ki, - - -, ky, associated with Ay, ---, Ay, respectively, is linearly
independent.

If X has p distinct eigenvalues (i.e., M = p), then (a) implies that the sum of all geometric
multiplicities in (c) is equal to p. Some examples of algebraic and geometric multiplicities are the

following. The identity matrix [(1) ?] has an eigenvalue 1 with algebraic and geometric multiplicity

equal to 2, since (é) and (?) are eigenvectors associated with eigenvalue 1. The matrix [} ?]

also has an eigenvalue 1 with algebraic multiplicity 2, but now the geometric multiplicity equals
1. The only eigenvector (up to scalar multiplication) associated with the eigenvalue 1 is (?)

Suppose the sum of all geometric multiplicities in (c¢) is equal to p, i.e., for all distinct
eigenvalues the algebraic and geometric multiplicities are equal. Then X has p (and no more than
p) linearly independent eigenvectors. Let these eigenvectors be the columns of the p x p matrix
K. Let the diagonal matrix A contain the associated eigenvalues on its diagonal, in the same order
as the eigenvectors appear as columns of K. From (8) it follows that there holds XK = KA. Since
K is nonsingular we may write

X = KAK™!, &)

which is called the eigendecomposition of X. The matrices K and A are not uniquely determined.
Indeed, the ordering of the eigenvectors and associated eigenvalues may be changed. Also, the
eigenvectors in K are determined up to scalar multiplication (they are usually normed to length 1,
which determines them up to sign). And, finally, for an eigenvalue A with algebraic multiplicity
a(i) larger than 1, we may include in K any a(A) eigenvectors spanning the eigenspace E(A).

The eigendecomposition (9) exists if and only if the sum of all geometric multiplicities in (c)
is equal to p. In this case, the matrix X is said to be diagonalizable, since there exists a nonsingular
matrix K such that K- 'XK is a diagonal matrix. For more information, see, e.g., Apostol (1969,
chaps. 4 and 5).

Simultaneous Diagonalization of Two Square Matrices and the Rank of p X p x 2 Arrays

Here, we discuss a link between the simultaneous diagonalization of two square matrices
and the rank of p x p x 2 arrays. This provides the tools for our analysis.

Let X be a real-valued p x p x 2 array with p x p slices X; and X,. If X]’1 exists,
Ten Berge (1991) has shown that a sufficient condition for X to have rank p is that XgXl’1
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has p distinct real eigenvalues. A rank-p decomposition can then be obtained through the eigen-
decomposition

X, X! = KAK ™, (10)

where A is the p x p diagonal matrix of eigenvalues and K contains the associated eigenvectors.
Taking

A=K, BT = K 'X|, C =1, C, = A, (11)

yields a full real-valued rank-p decomposition of X (as in (1) with E; = O). Note that (11) defines
a simultaneous diagonalization of X; and X, since we have nonsingular matrices A and B and
diagonal matrices C; and C, such that A='X;B~7 = C; and A~'X,B~7 = C,. The following
lemma gives rank conditions for real-valued p x p x 2 arrays. It is equivalent to Ja’ Ja’ (1979,
Lemma 3.1) and sharpens the condition of Ten Berge (1991).

Lemma 1. Let X be a real-valued p x p x 2 array with p x p slices X; and X,. Suppose Xfl
exists. The following statements hold:

1 If XgXl_lhas p real eigenvalues and is diagonalizable, then rank(X) = p.
@) If XzXl_1 has at least one pair of complex eigenvalues, then rank(X) > p + 1.
(i) If Xngl has p real eigenvalues but is not diagonalizable, then rank(X) > p + 1.

Proof. Recall thata p x p matrix is diagonalizable if it has p linearly independent eigenvectors.
Statement (i) follows from the use of the rank-p decomposition (11) above. Note that since Xl_l
exists, the array X has at least rank p. The proof of (ii) and (iii) is as follows. Suppose X2X1_1 has
at least one pair of complex eigenvalues or that it has p real eigenvalues but is not diagonalizable.
If rank(X) = p, then there exist pxp matrices A and B and diagonal matrices C; and C, such
that X; = AC;B” and X, = AC,B”". Since X;"' exists, we have A, B and C, non-singular. But
then X2Xl_] =CA = CI_IA_l is an eigendecomposition with p real eigenvalues and p linearly
independent eigenvectors, which contradicts our assumption. Hence, the rank of X has to be
larger than or equal to p + 1. O

Statement (i) states that Xngl must have p real eigenvalues for X to have rank p. If these p are
not only real but also distinct, then the rank-p decomposition of X in (11) is essentially unique.
We can use Kruskal’s uniqueness condition (4) to see this. The component matrices A and B are
both nonsingular, which implies k4 = p and kg = p. For C, there holds k¢ = 2 if all eigenvalues
of szfl are distinct and k¢ = 1 otherwise. If k¢ = 2, then Kruskal’s condition (4) is satisfied
(with R = p) and, hence, the rank-p decomposition of X is essentially unique. If the rank-p
decomposition of X is not unique, i.e., when XzXl_1 has (at least) one eigenvalue A with algebraic
multiplicity larger than 1, then the only way to construct alternative decompositions is by taking
different eigenvectors of A as the columns of A = K (see also Ten Berge, 2004).

The K3 Array Revisited

Let R = 2 and let X be the K3 array in (7). Ten Berge et al. (1988) show that if X is
approximated by rank-2 arrays, then the CP objective function does not have a minimum but
an infimum of 1. Below we will show that all CP solutions approaching the infimum become
degenerate. Moreover, it will be shown that a boundary point X of the set of rank-3 arrays
exists, which can be approximated arbitrarily closely from the set of rank-2 arrays, and for which

< 2
XX =1
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The component matrices A and B will be restricted to have columns of length 1. Hence, we
may write

_|:sina sinﬁi| and B_|:siny sinS] (12)

cosa cospf cosy cosé

for some «, B, v, and é. Ten Berge et al. (1988) show that, for the K3 array X, it follows that

. 1 —cos(a + y) 4+ pcos(B +68) ucos(a + y) —cos(B + 8) (13)
T 1 —p? | sin(e+y)—psin(f+38) —wpsin(e + )+ sin(B + 8)

where p = cos(e — ) cos(y — §). The CP objective function is thus a function of the four
parameters «, B, v, and 8. Ten Berge et al. (1988) show that it has the form

2uh
fla, B, %5)=2—1_—M2, (14)

where A = sin( — ) sin(y — §). Since fin (14) has an infimum of 1, it is clear that any path to
the infimum should satisfy

2UA
1 — u?

- 1. (15)

We will assume that A and B are nonsingular, which is equivalent to 1> < 1. From the fact that
(w+21)? =cos’(@ — B+ 8 — y) < 1, we know that
21 22
R oL 2 < (16)
1—pu?  1—pu?
Combining (15) and (16), we see that A — 0. From (15), it follows that (1 — wH/2m = Qu)~! —

n/2 — 0.Since u € [—1, 1] this implies either u — 1 or u — —1. Therefore, only the following
four limit regimes are appropriate:

a—p—-0, y—-6—-0 = 1—-0 pu—1, a7
«a—pB—->0, y—-86—->nm = A—->0 p—-—1, (18)
a—B—->mn, y—-86§—-0 = r1—>0, u——1, (19)
a—B—>mn y—-§—->1 = r—>0 upu—1. (20)

Notice that in (17)—(20) the values of « and y are arbitrary. This implies that a sequence of rank-2
approximations Y™ of X, where for each n the fitted model array Y is constructed from the
component matrices (A™, B™, C™), has infinitely many limiting points X such that | Y" — X| g
converges to the infimum if Y* converges to X. Next, we consider the component matrices A,
B, and C in each of the limit regimes in (17)—(20). It can be seen that all elements of (1 — 2)C
converge to zero, see (13). However, using the fact that u? — 1 and the observation that by (15)
the rates of convergence of « — 8 and y — é must be asymptotically equal (otherwise, the limit
in (15) would be zero), it can be verified that all elements in C converge to either infinity or minus
infinity. Furthermore, if © — 1, then the columns in C will become the negative of each other,
while if 4 — —1 they will become more and more alike. We may now conclude the following:

e For (17), the columns in A and B become more and more alike, while those in C become
the negative of each other.

e For (18), the columns in A and C become more and more alike, while those in B become
the negative of each other.
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e For (19), the columns in B and C become more and more alike, while those in A become
the negative of each other.
e For (20), the columns in A, B, and C become the negative of each other.

Hence, for each of the four limit regimes in (17)—(20) a two-factor degeneracy will be obtained.
In other words, a two-factor degeneracy is obtained for each sequence of CP solutions of which
the CP objective value approaches the infimum of 1.

Next, we show that a boundary point X of the set of rank-3 arrays exists, which can be

approximated arbitrarily closely from the set of rank-2 arrays, and for which |X — XHz =1.

That is, X is a limiting point for a sequence of rank-2 approximations of X, for which the CP
objective value converges to the infimum. Consider the following 2 x 2 x 2 array X with slices

~ 1 0 S 00

X1—|:O _1:| and X2—|:1 O:| (21)
It is clear that HX — X” ® — 1. Since 5(1_1 exists, a necessary and sufficient condition for X to have
rank 2 is that 5(25(1_1 has two real eigenvalues and is diagonalizable; see Lemma 1. We have

o o 0 0
X2X11=[_1 0] (22)

which has an eigenvalue 0 with algebraic multiplicity 2 and geometric multiplicity 1; the only
eigenvector is (?) (up to scalar multiplication). Hence, 5(25({1 is not diagonalizable and the array

X has rank 3. However, the array X can be approximated arbitrarily closely by rank-2 arrays. For

example, we may choose Y such that Ysz1 = [_81 _08] and Y — X as e | 0. For ¢ > 0, the

matrix YZYI_1 has two real eigenvalues (¢ and —¢) and is diagonalizable. Hence, it follows from
Lemma 1 that Y has rank 2 for all ¢ > 0. This implies that X is a boundary point of the set of
rank-3 arrays and the CP objective function (with R = 2) for X has an infimum of zero. Since
the CP objective function for X has an infimum of 1, there do not exist boundary points Z of the
set of rank-3 arrays for which H Z— XHz < 1. There is only one limiting point for a sequence
of rank-2 approximations of X for which the CP objective value converges to the infimum of
zero. Namely, this limiting point is X itself. In this limiting regime, the CP solution (A, B, C)
becomes a two-factor degeneracy. As shown above, there are infinitely many such limiting points
for rank-2 approximations of the K3 array X. This implies that there are infinitely many boundary
points Z of the set of rank-3 arrays with H Z— XH ® — 1. Each such boundary point Z is a limiting
point for a sequence of rank-2 approximations of X for which the CP objective value converges
to the infimum. Recall the statement by Kruskal et al. (1989) that, for 2 x 2 x 2 arrays of rank 3
and R = 2, degeneracy occurs when the sequence of CP solutions approaches a boundary point
of the set of rank-3 arrays, which can be approximated arbitrarily closely from the set of rank-2
arrays. This statement is valid indeed when the K3 array is considered.

For any CP solution approaching the infimum of 1 for X, we have k4 = kp = k¢ = 2 (if
either A or B is singular, i.e., either « = 8 or y = §, then A = 0 and the CP objective value
equals 2, see (14); if both A and B are singular, then the CP objective function has a minimum
of 3 (see Ten Berge et al., 1988, Lemma 1). Hence, Kruskal’s condition (4) holds (with R =
2) and the CP solution (A, B, C) is essentially unique. Note that this does not contradict the
fact that there are infinitely many limiting points X. Indeed, Kruskal’s condition guarantees the
absence of transformational freedom of the CP solution (besides the intrinsic transformational
indeterminacies of CP mentioned above) for a fixed fitted model array. The fitted model arrays,
however, are different for each iteration of the CP algorithm.
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Degeneracy for p x p x 2 Arrays of Rank p+1 or Higher

Here, we extend the analysis above to p x p x 2 arrays of rank p + 1 or higher. Our main
resultis Theorem 1 (see the Introduction), which states that if the CP model with R = p components
is fitted to such an array, then the CP objective function has no minimum but an infimum, and
any sequence of CP solutions of which the objective value approaches the infimum will become
degenerate. As mentioned in the Introduction, we only consider arrays in the following set:

R, ={Yis areal-valued p x p x 2 array with Yjinvertible}.

Note that the restriction to arrays in the set R, is only virtual. This can be seen as follows. The
set of p x p x 2 arrays which do not lie in R,, has dimensionality lower than 2 p?. This implies
that when Y is randomly sampled from a 2 p?-dimensional continuous distribution, it lies in R »
with probability 1. Also, any array not in R, can be approximated arbitrarily closely by arrays
in R,. Although we cannot consider any CP algorithm as a generator of random arrays, we can
safely assume, based on these observations and the results from our simulations below, that CP
solutions not lying in the set R, will not be encountered in practice.

The remaining part of this section is devoted to proving Theorem 1. We define the following
subsets of R,,. Let

S, ={YeR, : Y, Yl’1 has p real eigenvalues},
D,={YeR, : Y Yfl has p real eigenvalues and is diagonalizable}.

It can be seen that D, C §, C R,. By Lemma 1, all arrays in D, have rank p and all arrays in
Sy\ D,, where

SA\D,={YeR, : Y, Yl_lhas p real eigenvalues and is not diagonalizable},

have rank p + 1 or higher. Moreover, D, contains all rank-p arrays in R,. Hence, for X as in
Theorem 1, fitting the rank-p CP model yields the following optimization problem:

Minimize ||X — YH

= = 23
subjectto Y € D,,. =
For later use, we also define the problem
Minimize |X — Y|’ 4)

subjectto Y € §,.

In Table 1 below, we have summarized the defintions of the sets D, and S,. Also the rank values
of arrays in these sets (as proven in Lemma 1) are given. Note that

R\S, ={YeR,: Ysz1 has at least one pair of complex eigenvalues}.

We need the following result, the proof of which is postponed until the end of this section.

Lemma 2.

(). The boundary points of D, (which lie in R,) are the arrays Y for which Y2Y1_1 has p real
eigenvalues which are not all distinct.
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TABLE 1.
Definitions and volumes of the sets D, S,\D, and R,\S,. The rank values
of the arrays in these sets are proven in Lemma 1. The volumes follow from
Corollary 1 below.

YzYl’1 p real eigenvalues | Some complex eigenvalues
Diagonalizable rank(Y) =p rank(Y) > p+1
YeD,CS, Y € R,\S,
positive volume positive volume

Not diagonalizable | rank(Y) > p+1 rank(Y) > p+1
YeS\D, YeRr,\S,
zero volume zero volume

(ii). Virtually all boundary points X of D, (which lie in R,) have rank p + 1 or higher and lie
in the set Sp\ Dp, i.e., for these arrays Y2Y1_1 is not diagonalizable.
(iii). The set S, is a closed subset of R, and has the same boundary points as D .

Next, we use the statements of Lemma 2 to prove Theorem 1. Let X be as in Theorem 1. Since
Xl_l exists, the array X satisfies either (ii) or (iii) of Lemma 1. Below, we will treat these cases
separately.

Suppose XzXf1 Has at Least One Pair of Complex Eigenvalues

Consider the problem (24). Since X does not lie in the set S, and the set S, is closed (see
Lemma 2), it follows that the objective function in (24) has a minimum and an optimal solution
X exists. Moreover, since the objective function in (24) is strictly decreasing in any direction
toward X, any optimal solution X of (24) will be a boundary point of § . Indeed, a line can be
drawn from any interior point Y of S, to X. This line will intersect with the boundary of S,,. The
boundary point at the intersection is closer to X and, hence, has a lower objective value than the
interior point Y of S, we started with. In this way, the objective value of any interior point Y
of S, can be decreased by “moving toward the boundary of S,.” From Lemma 2, it follows that
virtually any optimal solution X of problem (24) lies in the set S \Dp.

Since in (24) the objective value of any interior point of S, can be decreased, it follows that
in (23) the objective value of any interior point Y € D, can be decreased by “moving toward the
boundary of D,.” However, from Lemma 2 it follows that the boundary of D, consists almost
entirely of rank-(p + 1) arrays. Since these arrays do not lie in D, the set D, is virtually open
and the objective function in (23) has no minimum, but an infimum. In practice, boundary points
of rank p do not occur as optimal solutions of (23) since these arrays lie in a lower-dimensional
subset of the boundary of D . This proves (i) of Theorem 1. Note that the value of the infimum

is equal to ” X- X”z > 0, where X is an optimal solution of problem (24).

Next, we will show that any sequence of CP solutions Y™ of (23), for which ||X(”) — X”z
converges to the infimum, yields a sequence (A", B®, C™) which becomes degenerate. This
will prove (ii) of Theorem 1. From the proof of (i) above we know that Y™ converges to
some X € § »\D,. Since Xes »\D,, we have that XZX has p real eigenvalues but is not
diagonalizable.

Let Y € D,. Then the matrix YzYl_l has a real-valued eigendecomposition KAK™! and a
rank-p decomposition can be obtained with A = K, B’ = K'Y, C, = I,, and C; = A; see
(11). If all eigenvalues of Yszl are distinct, then this rank-p decomposition of Y is essentially
unique; see the discussion below Lemma 1.
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Consider a sequence Y € D, which converges to some X € S,\D, as n — oo, and
for which the rank-p decomposition is essentially unique for all n. We denote the component
matrices of the rank-p decomposition of Y* by (A", B™_ C™) and assume that A®) and C*)
are restricted to have columns of length 1. Note that Y(zn)(Y(I"))’1 will converge to Xzil_l as n
— 00, and Xzil_l does not have p linearly independent eigenvectors. The matrix A" contains

the eigenvectors of Y(2")(Y(1"))’1 and will converge to a matrix containing the eigenvectors of
ng(fl. Hence, A will converge to a matrix with at least two linearly dependent columns. The
eigenvalues corresponding to these linearly dependent eigenvectors of 5(25([1 are necessarily
identical. Hence, in the matrix C these columns will become identical (up to a sign change).
In the matrix B®, the magnitude of the elements of these columns will become arbitrarily large.
Hence, the rank-p decomposition of Y will become degenerate as Y approaches X.

If the rank-p decomposition of Y € D,, is not unique, i.e., when Y, Y7 ! has (at least) one
eigenvalue A with algebraic multiplicity larger than 1, then the only way to construct alternative
decompositions is by taking different eigenvectors of A as the columns of A = K; see the
discussion below Lemma 1. Hence, the reasoning above also applies to these arrays. This means
that we have shown that all rank-p decompositions of any sequence Y € D, converging to X,
will become degenerate for large n. This completes the proof of (ii) of Theorem 1.

An illustration of the case where X2X171 has at least one pair of complex eigenvalues can be
found in Fig. 1.

D, R)\S,
rank p rank p+1
* X
Sequence of rank-p
approximations .
o — Boundary set S,\D

FIGURE 1.
Illustration of the case where XZXII has at least one pair of complex eigenvalues, i.e., X € R,\S,. The sets D, and
R\ Sp both have positive volume in the space of real-valued p x p x 2 arrays, while the boundary set S,\ D, has
zero volume; see Table 1. The set D, is virtually open, which is indicated by the dotted boundary line. The continuous
boundary line represents the boundary of S,, which is a closed set. The boundary point Xes »\ D) is the optimal solution
of problem (24) and is approximated arbitrarily closely by the sequence of rank-p solutions. Note that this figure is similar
to the illustration in Kruskal et al. (1989) for the 2 x 2 x 2 case.
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Suppose X2X]71 Has p Real Eigenvalues but Is not Diagonalizable

In this case X € S,\D, and X can be approximated arbitrarily closely by arrays in D,,.
Hence, the value of the infimum in (23) is zero and X itself plays the role of X above. We can
use the proof above to show that also in this case there holds that any sequence of CP solutions
of (23), of which the objective value converges to the infimum, will become degenerate.

Remark on the Type of Degeneracy in (A™, B™, C™)

Assume that A and C are restricted to have columns of length 1 and (A, B®™, C™)
is of the form (11) as above. From the algebraic and geometric multiplicities of the eigenvalues
of Xzfifl the number of components of (A®™, B™, C™) involved in the degeneracy can be
determined. For example, suppose that p = 5 and 5(25((1 has three eigenvalues with geometric
multiplicity 1 and algebraic multiplicities 1, 1, and 3. Then, for the eigenvalue with algebraic
multiplicity 3, the matrix A" contains three nearly identical columns (up to a sign change), which
are approximately equal to the eigenvector of XZXI_I associated with this eigenvalue. The same
three columns in C" are nearly identical (up to a sign change), as explained above. The elements
of these columns in B will become arbitrarily large. Moreover, it can be shown that their sum
will remain small. This is exactly a three-factor degeneracy as introduced in the Introduction and
presented in (6).

Next, consider the following example. Suppose that p = 3 and 5(25(1_] has one eigenvalue
with geometric multiplicity 2 and algebraic multiplicity 3. In this case, the matrix A" contains
three columns which are approximately equal to an eigenvector of XZXII, and which are nearly
linearly dependent. The columns in A® do not have to be nearly identical (up to a sign change),
since there exist two linearly independent eigenvectors of 5(25(1_1. In C™ the columns are again
nearly identical (up to a sign change) and in B") we have arbitrarily large elements in all three
columns. Moreover, there will be a linear combination of the columns of B which remains
small. This linear combination depends on the form of linear dependence of the columns of
A, Hence, if the columns of A" are not nearly identical up to a sign change, then we have a
degeneracy involving three factors which is different from the three-factor degeneracy in (6). This
example can be extended to any eigenvalue A of 5(25(1_1 with a(L) > g(A) > 2, in which case we
have a degeneracy involving a() factors, and the corresponding columns of A" have at most
rank g(1) in the limit. Remarkably, the cases where more than two factors form a degeneracy, but
the corresponding columns of A are not nearly identical up to a sign change, did not occur in
our simulations below. However, such degeneracies can be obtained by approximating an array
Xes »\D,, for which f(zf(l_l has an eigenvalue A as above, and choosing a suitable starting point
for the CP algorithm.

Note that if XZXI_I has several distinct eigenvalues for which the geometric multiplicity is
smaller than the algebraic multiplicity, then there will be a group of degenerate factors for each
such eigenvalue.

Proof of Lemma 2

First, we prove (i). By definition, the boundary points of D, can be approximated arbitrarily
closely by arrays in D, and by arrays in R,\ D,. Let Y be an array for which Ysz1 has p real
eigenvalues which are not all distinct. Since the eigenvalues of Ysz1 depend continuously on the
elements of Y, it follows that Y can be approximated arbitrarily closely by arrays in D ,. Indeed,
a sequence of arrays U, with U® — Y as ¢ | 0, can be constructed such that U(;) (U(;))‘l has
p real and distinct eigenvalues, i.e., Q(s) € D, forall ¢ > 0.

Next, we show that Y can be approximated arbitrarily closely by arrays in R ,\ D ,. Suppose
Y2Y1_l has a double real eigenvalue A with only one eigenvector X, i.e., Y2Y1_l is not diago-
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nalizable. Let ¢ be a sequence of arrays such that ZS(Z%)~1 has the same eigenvalues and
eigenvectors as YZYI_I, except that the double eigenvalue X is replaced by the complex-valued
pair A £ ie, and the corresponding eigenvectors are X & i ¢ y, where y is linearly independent
from the other eigenvectors of Zég’)(Zﬁs’))’l. Clearly, the arrays Z* lie in R »\ D, and we can
choose the sequence such that Z) — Y as ¢ | 0. This shows that Y is a boundary point of D -
Next, suppose Yng1 is diagonalizable and has a double real eigenvalue A with two linearly in-
dependent eigenvectors x and y. Then the complex-valued vectors x = iy are also eigenvectors of
Y,Y; ! corresponding to the eigenvalue 1. Let the sequence of arrays ) be such that Z$(Z(*))~!
has the same eigenvalues and eigenvectors as Y, except that the double eigenvalue A is replaced
by the complex-valued pair A + ie, and the corresponding eigenvectors are X % i y. Then ) lies
inR,\ D, for all ¢ > 0 and converges to Y as ¢ | 0. Hence, Y is a boundary point of D,.

It remains to show if Y2Y1_1 has some complex eigenvalues or if it has p real and distinct
eigenvalues, then Y is not a boundary point of D ,. Suppose first that YzYl_l has some complex
eigenvalues. The eigenvalues of Y2Y1_l depend continuously on the elements of Y. This implies
that the array Y cannot be approximated arbitrarily closely by a sequence of arrays U® in D >

-1
since U(;') (U(f’)) will have p real eigenvalues for all ¢ > 0. Hence, Y is not a boundary point

of D,. Next, suppose Ysz1 has p real and distinct eigenvalues. Complex-valued eigenvalues
of real-valued matrices occur only in complex-conjugated pairs A & iu. Hence, if a sequence
of real-valued matrices with complex eigenvalues converges to a real-valued matrix with only
real eigenvalues, then the latter matrix necessarily has some identical real eigenvalues. This
implies that Y cannot be approximated arbitrarily closely by a sequence of arrays ¢ such that
Zég’)(Zﬁa’))_1 has some complex eigenvalues for all ¢ > 0. Hence, Y is not a boundary point of
D ,. This completes the proof of (i).

Next, we prove (ii) by showing that the set of boundary points of D, for which Y2Y1_1 is
diagonalizable has lower dimensionality than the set of boundary points for which Y2Y1_l is not
diagonalizable. This implies that virtually all boundary points Y of D, have Y2Y1_l not diagonal-
izable and, hence, lie in the set S,\ D . Our proof is as follows. For a real-valued square matrix
with real eigenvalues to have two identical eigenvalues, requires a deterministic relation between
the elements of the matrix. The matrix then automatically has one eigenvector corresponding
to the pair of identical eigenvalues. However, to have two linearly independent eigenvectors
corresponding to the pair of identical eigenvalues, requires an additional deterministic relation
between the elements of the matrix. Hence, the matrices which are diagonalizable lie in a set
of lower dimensionality than the matrices which are not diagonalizable. Analogously, the set of
boundary arrays Y for which Yng_1 is diagonalizable has lower dimensionality than the set of
boundary arrays for which Y2Y1_l is not diagonalizable. This completes the proof of (ii).

Next, we prove (iii). We need to show that the set S, is closed. We do this by proving that
all boundary points of S,, are included in S, itself. By definition, the boundary points of S, can
be approximated arbitrarily closely by arrays in S, and by arrays in R,\ S,. From the definition
of the set S, and the proof of (i) above, it follows that the boundary points of S, are the same
as the boundary points of D ,. Hence, for a boundary point Y of S, the matrix Y2Y1_l has p real
eigenvalues which are not all distinct. Since Y lies in §,, this completes the proof of Lemma 2.

A Numerical Example for p =3
As an illustration of a sequence of CP solutions converging to a boundary point X of § p» WE

will consider the 3 x 3 x 2 array X in (5). Since X2X1_1 has two complex eigenvalues and the
maximal rank of real-valued 3 x 3 x 2 arrays equals 4, it follows from <br/>Lemma 1 that X has
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rank 4. When the CP model with three components is fitted to X, we obtain the solution (6), which
is a three-factor degeneracy. For this solution, the CP objective value is 0.4871. Since almost the
same solution (up to sign changes and jointly permuting columns of A, B, and C) is obtained
for a variety of different (random) starting values for A, B, and C, it is reasonable to assume
that the solution is unique, i.e., there is a unique optimal solution X of problem (24), which is
approximated arbitrarily closely (depending on the stopping criterion of the CP algorithm) by
arrays Y in D,,. From the solution in (6), the approximating array Y can be obtained as Y| =
AC,B’ and Y, = AC,B’. The matrices K and A of the eigendecomposition KAK™! of Y2Y1_l
then approximate the matrices of eigenvectors and eigenvalues, respectively, of Xzil_l. From (6),
we obtain the following for K and A, where the columns of K have length 1:

—0.4864 —0.4737 —0.4615 3.3092 0 0
K= 06648 0.6598 0.6535 |, A= 0 3.4416 0 . (25
0.5670  0.5834  0.5999 0 0 3.5804

Notice that K is determined up to a sign change for each column. From (25) it can be seen that
Y2Y1_l is close to having one eigenvalue with algebraic multiplicity 3 and geometric multiplicity
1. This will hold exactly for Xzifl , which shows that X is a boundary point of S3; see Lemma 2.

Next, we sharpen the stopping criterion of the CP algorithm. As a consequence, the algorithm
runs longer, the solution array Y is closer to the boundary point X, and the CP objective value is
closer to the value of the infimum. The new CP solution was computed using the same starting
values as for (6) and reads as

0.4814 0.4663 —0.4738 0.7178 —0.6993 0.7086
A= —0.6627 —0.6558 0.6595 |, B = 06153 —0.6422 0.6288 |,
—0.5737 —0.5938 0.5837 0.3258 —0.3140 0.3202

(26)

| 1742.3 —1689.7 3431.0
~ | 5853.1 5956.0 1180.5 |’

which is again a three-factor degeneracy. The CP objective value is now 0.4867. Compared with
the previous solution (6), there are no big changes in the elements of A and B, but the elements of
C have increased in magnitude. For this new solution, the eigendecomposition KAK ™! of YzYl’1
satisfies:

—0.4814 —0.4737 —0.4663 33595 0 0
K= 0.6627 0.6595 0.6558 |, A= 0 34409 O . (27)
0.5737 0.5837 0.5938 0 0 3.5249

Comparing (25) and (27), we see that the columns of K have become more alike and the three
eigenvalues in A are closer to each other. This illustrates the convergence to Xngl, which has
one eigenvalue with algebraic multiplicity 3 and geometric multiplicity 1.

Approximating a Random pxpx2 Array of Rank p + 1

In the remaining part of this paper, we consider a p x p x 2 array X of which the elements
are drawn from a 2p2—dimensional continuous distribution F. Ten Berge & Kiers (1999) have
shown that, with probability 1, the rank of X is either p or p + 1, where both rank values occur
with positive probability. Hence, the typical rank of real-valued p x p x 2 arrays equals {p,
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p + 1}. Note that, for a set A of real-valued p x p x 2 arrays, the statement “A occurs with
positive probability,” i.e., F(A) > 0, is equivalent to the statement “A has positive volume,” i.e.,
the dimensionality of A equals 2p?.

Note that Xl_1 exists with probability 1 and X2X1_l has p distinct eigenvalues, i.e., is
diagonalizable, with probability 1. Therefore, we have the following corollary of Lemma 1.
This also shows that the sets D), and R,\S, have positive volume, while the set S,\ D, has zero
volume; see Table 1.

Corollary 1. Let X be a real-valued pxpx2 array with pxp slices X| and X. If the elements of
X are drawn from a 2p*-dimensional continuous distribution, then the following statements hold
with probability 1 :

(i). IfX2X1_1 has p real eigenvalues, then rank(X) = p.
(ii). IfX2X1_1 has at least one pair of complex eigenvalues, then rank(X) =p + 1.

Simulation Results

Theorem 1 states that when the CP model is fitted to a random p x p x 2 array X of rank p
+ 1, and the number of components equals p, then the CP objective function has no minimum but
an infimum and all CP solutions approaching the infimum will become degenerate. To investigate
which patterns of degeneracies tend to occur in the CP solutions, we have conducted a simulation
study. For values of p from 2 up to 5, we have generated random p x p x 2 arrays X. If the rank
of X'is p + 1, i.e., when XzXl_1 has at least one pair of complex eigenvalues, we have fitted the
rank-p CP model to X. For this, we used the Multilinear Engine program (Paatero, 1999), which
was kindly provided to us by Pentti Paatero.

We have considered six categories of arrays X, namely 2 x 2 x 2 arrays where Xngl has
two complex eigenvalues, 3 x 3 x 2 arrays where XzXfl has two complex eigenvalues, 4 x 4
X 2 arrays where X2X1_1 has one pair of complex eigenvalues, 4 x 4 x 2 arrays where X2Xl_1
has two pairs of complex eigenvalues, 5 x 5 x 2 arrays where XzXl_1 has one pair of complex
eigenvalues, and 5x5x2 arrays where X2X1_1 has two pairs of complex eigenvalues. We have
calculated the rank-p approximation of 10 arrays of each category. For each array we used 10
different (random) starting values for the component matrices A, B, and C. We have restricted A
and B to have columns of unit length. In a vast majority of cases (581 out of 600) all 10 runs for one
array yielded almost the same solution (up to sign changes and a joint permutation of the columns
of A, B, and C). In the other 19 cases the algorithm terminated with a suboptimal solution. We
discarded the outcomes of these 19 runs and will speak of the CP solution for a certain array
X from now on. Notice that this indicates that usually there is a unique boundary point X of
Sp, which is the optimal solution of problem (24). This boundary point is then approximated
arbitrarily closely (depending on the stopping criterion of the CP algorithm) by the rank-p arrays
in D,. Note that for the K3 array, which we discussed above, there are infinitely many such
boundary points X. In this sense, the K3 array is an exception.

As we expected, all solution arrays lie in the set R, i.e., their first slice is invertible. The
types of degenerate solutions obtained for the arrays of the six categories can be found in Table 2
below. The notation x-fd denotes a degeneracy involving x factors. The notation 2-fd + 2-fd
indicates that two different pairs of factors in the solution each form a two-factor degeneracy. The
notation of 2-fd 4 3-fd is used analogously. Remarkably, each time an x-fd is obtained for x > 3,
the x columns are nearly identical (up to a sign change) in two of the component matrices and their
sum (up to a sign change) is close to zero in the third component matrix. Hence, the 4-fd and 5-fd
cases we obtained are generalizations of the three-factor degeneracy in the Introduction. It should
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TABLE 2.
Frequencies of different degenerate CP solutions resulting from rank-p ap-
proximations of random p x p x 2 arrays X of rank p + 1. Of each category,
10 different arrays are considered

Category 2-fd 2-fd+2-fd 3-fd 2-fd+3-fd 4-fd 5-fd

p=2 10 — — — -
p=3 9 — 1 — — —
p =4 4 0 5 — -
p=4 0 7 1 — 2 —
p=5° 7 0 1 0 2 0
p=5" 0 3 1 4 1 1

*Two complex eigen values.
®Four complex eigen values.
“Two complex eigen values.
4Four complex eigen values.

be noted, however, that especially for p = 4 and p = 5 the convergence of the CP algorithm was
very slow and the type of degeneracy was obtained by extrapolating the CP solution. Therefore,
the numbers in Table 2 should be regarded with some reservation.

It can be seen from Table 2 that for p > 3, several different types of degenerate CP solutions
are obtained for different random arrays. It is tempting to search for general rules which predict,
based on the eigenvalues of XzXl_1 , the type of degenerate solution that will be obtained. However,
we have not found any indications of the existence of such rules.

Discussion

We have shown that if the p-component CP model is fitted to a real-valued p x p x 2 array
of rank p + 1 or higher, then the CP objective function does not have a minimum but an infimum.
Moreover, any sequence of CP solutions of which the objective value converges to the infimum,
will converge to a limit point on the boundary between the sets of rank-p and rank-(p + 1) arrays.
This limit point has rank p + 1 or higher. When the rank-p sequence gets close to the limit point,
it necessarily becomes degenerate. This result extends and proves the statements made by Kruskal
et al. (1989) for the 2 x 2 x 2 case.

The result of Theorem 1 can be extended in the following ways.

e All norms on the finite-dimensional vector space are equivalent and induce the same (i.e.,
the Euclidean) topology. Therefore, the result of Theorem 1 still holds if the Frobenius
norm in the CP objective function is replaced by any other norm, e.g. weighted least
squares or Gaussian maximum likelihood.

e JetXbean/ x J x K array, with [ > J > p, and suppose X satisfies the Tucker3 model
(3) with perfect fit, and with a p x p x 2 core array G of rank p + 1 or higher. If rank(X)
= rank(G), slice G is invertible and X is approximated by rank-p arrays, then it can
be shown (analogous to the proof of Theorem 1) that the CP objective function has no
minimum but an infimum and all CP solutions of which the objective value approaches
the infimum will become degenerate.

e For real-valued p x g x 2 arrays, sometimes (with positive probability for certain com-
binations of p, g, and R) degenerate CP solutions are encountered. In Stegeman (2005a)
it is explained how this happens, using the result of Theorem 1.
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e For 5 x 3 x 3 arrays, Ten Berge (2004) has developed a rank criterion similar to Lemma
1. A seventh degree polynomial is constructed, the coefficients of which depend on the
elements of the array. If the polynomial has real and distinct roots, the 5 x 3 x 3 array
has rank 5. If some roots are complex, the array has rank 6 or higher. Using this result,
and the (partial) uniqueness of the rank-5 decomposition of 5 x 3 x 3 arrays of rank 5,
Stegeman (2005b) explains why degenerate CP solutions occur when 5 x 3 x 3 arrays of
rank 6 are approximated by rank-5 arrays.

Note that the type of degeneracy described in this paper and in Stegeman (2005a, 2005b) does
not occur in the complex-valued CP model. In the latter case, it does not matter whether our
polynomial (in Lemma 1 or in Ten Berge, 2004) has real or complex roots, and the rank of the
array over the complex field is equal to the rank over the real field in the case of only real roots.
The degeneracies in the real-valued CP model, described here and in Stegeman (2005a, 2005b),
occur due to a two-valued typical rank and (partial) uniqueness of the rank-R decomposition.
Whether this is the case for all degeneracies in the real-valued CP model is still an open problem.

Analogous to Paatero (2000), we may consider swamps as areas of the space of real-valued
p X p x 2 arrays where the sequence of rank-p approximations, generated by the CP algorithm,
advances very slowly. It follows from Theorem 1 that if the target array X has rank p 41 or
higher, the swamps occur near the boundary between the sets of rank-p and rank-(p + 1) arrays.
In this case, the CP algorithm necessarily terminates in the swamp and modifications to the
CP algorithm cannot prevent this. The only way to avoid degeneracies is to include additional
restrictions on the component matrices A, B, and C.

We may also consider the case where X has rank p, but is located inside or near a swamp.
Such arrays are easy to construct by taking A, B, and C as in (11), with A and B (or also C)
nearly rank-deficient. Note that it follows from (11) that a nearly rank-deficient A implies a nearly
rank-deficient B and vice versa. Since this rank-p decomposition is unique, any rank-p sequence
converging to X will become as degenerate as the (A, B, C) used to construct X. For the 2 x 2
X 2 case, such examples can be found in Paatero (2000). We conjecture that also the example
in Paatero (2000), again for the 2 x 2 x 2 case, where the starting point of the CP algorithm
is chosen such that the rank-2 sequence cannot get around a curve in the boundary between the
starting point and the rank-2 target array X, can be generalized to the setting of p x p x 2 arrays,
although it may be difficult to visualize. In the case where a rank-p array X is located inside or
near a swamp, modifications of the CP algorithm may speed up the convergence to X.

Zijlstra & Kiers (2002) observed that two-factor degeneracies occur not only in CP but also
in other variants of factor analysis. They show that two- and three-way factor analysis models
which yield degenerate solutions, necessarily have rotationally unique components. It would be
interesting to consider these factor analysis models and try to explain the occurrence of degenerate
solutions by using the same framework and tools as in the proof of Theorem 1.
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